Hubbard Lab

My laboratory is interested in the molecular mechanisms by which the insulin receptor and other receptor tyrosine kinases (RTKs) are activated upon ligand binding, and the structural basis for recruitment of downstream signaling proteins to activated receptors. The main experimental technique we employ for three-dimensional structure determination is x-ray crystallography. Members of the RTK family include, among others, the insulin and insulin-like growth factor-1 (IGF1) receptors, fibroblast growth factor receptor, platelet-derived growth factor receptor, and epidermal growth factor receptor. RTKs play critical roles in signal transduction pathways that mediate cell proliferation, differentiation, migration and metabolism, both in organismal development and in adult homeostasis. RTKs have also been implicated in the onset or progression of numerous cancers. We are also interested in the molecular mechanisms by which JAK2, a member of the Janus kinase family of non-receptor tyrosine kinases, is regulated. Activating mutations in JAK2 are causative for myeloproliferative neoplasms in humans.